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Tartan: Notes arid Examples -1-

1. Notes on Important Issues
The Tartan refs renca manual is the defining document for the Tartan language. However, some of

the facilities designed in response to the Ironman rep.srement deserve more unified and expository
explanations then can be included in a reference manual. This chapter discusses the Tartan solutions
to several important problems posed by the Ironman reqjrsmsnt.

The Tartan language draws heavily on the Pascal tradition. Soth the referenc, manual and the..
notes assume familiarity of Pascal-like languages. These notes also assume familiarity with the Ironman
requirements (1] and the Tartan r&arencs manual (2].

1.1. Vocabulary
I

A Tartan program is made up of definitions, declarations, and (executable) stateme nts. A definition
binds an identifier to a medial.1 routine (fwiclion, procedure, or procsss ), type, or .xcepti om it is
processed diving translation. A declaration binds an identifier to an object (Le., a variable or value); it
Is processed at run tim., usually to allocate storage. Ex.cutable .tatemsnu. are elaborated at run time

• to effect computations — manipulation of values.
Identifiers can be bound to modules, routi nes, types, objects, statements, and exceptions . Individual

identifiers are qualifIed with the names of the modules in which they are defined in order to avoid
con flicts with name, declared in other mantis,.

The computation described by a program is carried out by elaborating the program. We use the
• word elaboretfon , In preference to exeajtlon’, to connote action, taken diving translation as well as

those taken during execut ion. Elaboration may be thought of as an idealized direct execution of the
textual version of the progr am. The effect of elaborating audi construct In the languag. is given in the
reference manual.

Although the language prohibits making a declaration that gives new meaning to an identifier in a
given scope, duplicate identifiers night ails. in tire . situations. These situ ations, and the way Tartan
deals with there, are.

- The same identifier is exported from two modies. The ambiguity is prevented by name• qualification. All Identifiers exported from a mactie are prefixed with the name of the
modije that exported theni the prefix I. separated from the identifier by an apostrophe.
Thus if Identifier x is exported to th. same scope by both macties M and N, we write

11’ x I for the x expor ted free Pt
N x  I for th i x .xpor tsd fros N

The qualification may be omitted if no ambiguty arises.

- An identifier is used as an over loaded routine or type neme. That ii, the same routine name
is given several definitions with different numbers or types of parameters. Operator
overloading is permitted so that similar operati ons on distinct types, particularly Infi x
operations, can be given the same names. The identifiers for the routines or type. or .
disambiguated by exammhing the parameter types and choosing the routine whose formal
parameter types are matched by the types of the actuals. A similar situation exi sts with

• identifiers for fami lies of related types. In order t. discuss these situations, we introduce the
• • notion of slgnatxe.

- The signatue of a routine I~ tPie routine name together with its formal parameter types.
The type of the value retuned by a function is not Included in its slgns*iaa.

- The signatLie of a type is its simple type name together with Its gsnerlc characteristics.
Generic characteristics are discussed In SectIon 1.5.1.

- A literal or constructor might potentially be of two or more different types. The ambiguity Is
resolved by qualifying the literal or constructor with the i..Mnd. d type, including its

• attr ibutes.

w
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• 1.2. Scope and Extent

• Scope determines the interpretatIon of identifiers, so all the text in a given lexical scop e shar•s the
same voca~jary -- definitions , variables, etc. Scope mutes permit some Identifiers t~ be used with the
same In~erpretat to n In nv.altlple lexical scopes

The extent of a variable Is its lifetime — the time diving which It affects or Is affected by the
elaborat ion of the progrsnL The interaction of control and lexical stnj ctu-e determines ex tent Binding
Is the assoc iation of Identifiers with program entitle . (objects, mactie., routines , types, statements , and
exception. ). The bindings In affect at any time result from the Interaction of control and lasical sco pe.

1.2.1. Scope

Lexical str.ict’.we is imposed on Tartan programs by blocks and modules, wh ich delimit lexical
scopes. There es no restrictions on the ways these scopes may be nested. Both constructs may use
identifiers defi ned in other scopes: both may define identi fiers that can be used in other scopes.
Scope rules govern the legal bindings of identifiers in a lexical scope to program entit les: they also
control the imparting and exporting of ident ifiers to other scopes. Stocks and medial.. differ only in
their scope rules and in their effects on the extent of variables. Tartan has two scope ru es:

- An open scope inherits (imports automatically) all the identifiers that are defIned In its
enclosing sco pe. It may not export any identifiers to its enclosing scope. Stocks are open

• scopes except when used e. routine bodes.

- A closed scope inher its all Ident ifiers that am. defined in its enclosing scope except thos , for
l abel s and objects. 1 It may explicitl y import identifiers for objects (vari ables and constants ),
~rovlded they have global extent A dosed scope that is a modi.~e may export identifiers that
name variables, definiti ons, or exceptlons the exported identifiers Pisve the status of any
other identifie rs defined In the enclosing scope. All medial. . are dosed scopes, as are blocks
when they are used as routine bodies.

Identifiers that vs exported from an irmsr scope or imported from an cuter sco pe have the status of
identifi ers defined In the scope. Redefimtlon at identifiers within a scope is not permitted. The

• conve nience 01 being able to do so does not offset the danger of confusion. IN. does not, how ever ,
prohibit overloading of routines names: tPie differences in slgnakwes suffice to prevent confusion. In

• addition, the same identifier might be imported with different meanings from two different modu les;
such identifiers are qualified with the names of the mact ies In which they were defined. Thus they
am. net duplicate definitions. Similarly, literal. and constructors vs qualified with their types to
prevent ambip.aty. hi either case, the montie or type qualifier may be omitted if no ambiguity arises.

1.2.2. Extent

Extent rule. govern the lifetimes of objects. Extant is cont rolled by block s, Independent of whethe r
they correspond to open ar closed scopes. Nothing except blocks controls extent The stati c data of a
block ii allocated when the declarations of the block are elaborated (In lexical order) at block entry.
It I. deallocated when the block I. exited or terminated. Note that macties do not define extents , so
the extent of data defined in a modi4e coincides w ith the extent of It. iisroiadng block.

Values of dynamic types point to dynamically allocated variables The type of object that may be
painted at is pam of a dynamic type. The extent of dyn.icaUy allocated variables is coincident with
the blocks In w .ch the assoc iated dynamic types are declar ed Since type names are not accessible
outs Ide the blocks In whi ch they are defined, no references can outlive the block with which the
extent Is associate d.

‘UterUs and Ident ifiers for variables that are declared nenlfsst are inherited.
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1.3. Modules and Routines
Mocties and routines are dosed scopes. Macties serge as an sncapeiatlon mechanism, protecting

the privacy of definitions and declarations witho ut rasb lctlng their extant Routines are used for
program structuring and ab*actlon of operators they define operations that may be invoked during
elaboration of a program.

1.3.1. Modules

A module is a dosed scope that allows local definitions to be shared without making them public.
It also serves to birdie up related definitions for .dnVm*attvs (program organization) purposes. It
may export Identifier s fo r defintlion a and object, to the scope In which it ). defined A modal. has no
parameters.

A mactie is purely a scope-definIng device It. elaboration takes place during the elabora tion of
d.c leretl ons for the block in which the modal. is dstl nad. This elaboration consists of elaborating the
definitions and declarations of the mactie In lexical order, then alaboratbig the statement, of the

• mo~ ie.
A mactie or routine inherits identifiers for definitions (macties, routines, types, and exceptions),

litersis, and manifest objects from Its enclosing scope. It may expilcitiy Impart identifiers of objects
from that scope, provided the objects have global extant A modie, but net a r~utlne, may export
identifiers ether than labels to its inclosing scope.

1.3.2. Routines
A routine is a dosed scope whose body is a block. Thus it. body contr ols extent for local

dad arstions, but does not inherit identifiers for variables or non-manifest constants. The 4ormals~ list
declare, the identifiers for parameters.

A routine may be a function (hiss), which returns a value and has no visibis side affects ; it may be
a procedure (prsc), which can modify its perimeters but oust be called as a statemant or it may be a
process, which is a potenttally-paraII.l proced.,s. Special type-specific routines for many types are
listed in the Tartan Reference Manjal.

The symbols for the uiary and binary operators are used as routine names in order to provide
overloaded definitions for those operations.

If a .cblndinp in a routine header Is omitted, it Is assumed to be coast Tb. result binding may be
used only in dormals, lists of procede’es. Fixuctions are permitted to specify var parameters in order
to avoid the copy associated with coast ’ However , as noted below, visible aids affects on such
parameters are prohibited. No duplication of identifiers within the 4oimal s> list 1* permitted. Further,
formal parameter names may not conflict with declarations or imports In the routine body.

If a routine name is overloaded, the definition whose .gnatia’e matchss the call I. selected.

~~ Ing elaboration of a function, assignment to a var iable that is not local to the function body (or to
the body of any routine it invokes, directly or Indirectly) i~ permitted only if the functi on l~ never
invoked in a scope where such a change Is made to a variable or component that Is di rectly
accessi ble by the caller. Such var iables may be imported by the firetlen from a mactie withi n which
the function is define d. They m a y  also be fields ~f var perimeters if the type of the parameter is
defined in the same module as the function and the field name is not exported. An example of the
latter case appears In section 2.4.

• This is a compromise solut ion to the side-affect problem. Many routines are mit. reasonably coded
as value- returning Get of sect Ion 2.4, monitorIng routines, random runber generators, and Pop for
stacks. However, the current state of the art does not offer a sharp rule from distl ngiishkug safe from
unsafe side effects.

lb the presenc , of parallelism, it may not be ate to optimize sway the copy of a coast parameter
even If the routine does not altar It

L —. •~~• -• 
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Actual paremetera or. matched with formal paramaters positlonally. They ~ii.t satisfy restrictions on
type, binding and aliasing.

- The type of an actual parameter is acceptable if its (type name> exactly matches the <type
name> of th , corresponding formal parameter. Iype attributes (instantIatIon parameters of a
type) play no role in type check ing.

- The binding of the actual parameter a acceptabl, if It matches the bindinp of ther corresponding formal parameter according to the following rUeL
If the formal parameter is than the actual parameter may be

var var i~
.

coast <expr~manifest any manifest <.xpr>
result <vo ids

- Finally, th, set of actual parameters oust $stisfy the following nonellasing reotrictt om A
var iable may not be used in more than one var or result position of a single procedure or
process call. For the purpos. of testi ng this restriction, imported vari ables are considered to
be var perimeters.

1.4. Generic Definitions
A facility for making gener ic defini t ions is provid ed in order to allow the programmer to write a

single textual definition that serves as an abbrev iation for many closely -related specific definitions.
Modules and routines may be defined gener ically.

A generic definition is instantiated by referring to it as the body of a modal. or routine definition.
The effect of th , instantiation Is as if the generic definition were iexicall y substituted In place of the
referenc e to it. That is, the body of the mactie or routl~ being defined becomes a copy of the
generic definition.

1.4.1. Writ ing and Using Generic Defini tions
A generic definition Is syntactically like the corresponding specdlc definition except that it is

prefixed by the word generic and It msy have a set of generic parameters (enclosed in sq~are
brackets) after the name of the construct being defined. The parameters may be any defined
identifiers, including those for variables, routines, types, or medics, or any expreseion. When the
gener ic definition Is nstantieted~ the text of the actual parameters replaces the identifiers that
represent the format parameters. The substitution is done on a lexical, rather that a str ictly textual ,
basis. That is, the identifiers In the generic definition are renamed as necessary t~ avoid conflicts
with the identifi ers In the actual parameters.

For example, the collection of functions

firs F2lXsInt)~ sInti bsVn ~ 
is 2 * X end

funs F3(XsIrit)vslnt ; besin ~ s. 3 * X endfixis ~4 (X* In t )yz ln t ;  bs~Wi ~ 4. 6 * )C end
end so on

can be defined by the generic definition

generic fvms F UIu lt tl nt l XiIn t )~s lnt; bsgln 
~ 

is flul t * X .iW

and the specific Instantlations

fuse F2 is c r21
funs c3 ls F~3l
f irs F4 Is F (61

arid so on
An Instanti ation of a generic definition may be used as the body of a specific mactie or routin e. The

usual restr ictions on de,’Iriing new identi fiers apply to the modu le or routine being defined In terms of a
g neric.

Generic typ. definition , arise fr om generic modjies. They are instan tiated when the modal. Is
instantiated. Thss’eafter, they may be used in dec larations or definitions.

~-~~- --.-~ - • • - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If the generic definition has generic parameters, the actual parameters suppl ied with the
instanti ation oust have corrsponding types and be syntactically eAtable for subetlbiion.

If a generic definition Is instantiated more than once in a scop e, aabl~jou. names may be
introduced. The usual rules for resolving such ainbigub. s apply.

1.4.2. Separste Definitions
Tartan supports sspar.te definitions, and potentially separate cOllVdMlOi% ki the sams we, U it

supports generic defInitions. A program may be broken Into separately defined segments. This
decom position oust take place in the global extent The nits of separate definition are media. and
routines. The definition

‘I
I

modul* 0 is as,umed(l)
:i 

_________ ________In a segment has the effect of rnaldng the semantics of the segment the same as if the (separately
defined) text of Q had been substituted for Is sssume~ IT’. The identifier I refers to a file, library, or
other faci lity for sto ring separately defined segments. The relation between the identifier I and that
stora ge facility may be established by a pragmat.

Suppose we want to develop and maintaln a program with the following strucüe~

b.gln
E modid. CCII; b.~in .*psrt Xi . . . sad;

module P11: b.gln hiupsrt X ,Y; .cpsrt 2* . . . sad;
msduls flZs

begin import X .Zs
p sxporI U;

begin . . . sad;

p I Plain prograe using U, X . V . 2
rr

t~~~~~I

If th. defin itions of C014 Ml, and M2 are stored In a library, the foliowing program wi ll hays the
same effect:

begin
prig Require lCoauOe f .L18.C0I1.TXT~; Requir ,lfl 10ef .LIB.fl1 .~~L);

Rsquir.(tl2Osf ,LIB.tlZ.R EL)s gyp;
...odule CCII is asuumsd (C0I~.f);
module P11 ii assumed (fl1D.~);

P12 ii .usumsd (P12Dsf);
vu, Vi . .

P PlaIn ~reqr aa us ing U, X . V. 2
end;

We assume here that the second arganent of the Reqalre pragmat is interpreted by the system as a

* 
pointer into a library. From the standpoint of the Iaepags, it is a matter of optimization whether the
separate definitions are included as text or separately trendated and lInked in.

In order to perform Independent translations of a separately defined mactie, It is necessary to
embed it In an envir onment that providsi the definitio ns it depends sn. itO envirouxesrit oust form $

complete program. The translation system Is asai.uned to provide ~wiunanJs for selecting which
components of such a translation to save and for determining where and In whet form they are saved.
In the examples here, we will simulate that facility with a pregmel located outside the program. In the
example above, module COM does not depend on any sxter nai defi niti ons. In order to compile It

• separately, we writ• imply

Pr., S.vs(Cou.L!8.CCII.TXT) ; gyp;

nisduls CCII: begin siipsri Xi . . . sad;
end -

Medal. Ml depends on the X exported from COM and the V declared in the main program. To
trenslats Ml separately, we oust therefore write
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prig S.ve(It1.L16.fl1.REL); gyp;
begin
Pr ’, Requ ire( CouOsf .L1B.CCI1. TX T ) ; gyp;
module CCII Is n*jmsd tCCI~ sf ) ;
modide P11, begIn impart )I. V; e.part 2; • . . sad;
v u, Y; . .
sad

If mo~ie M2 were translated monoiltP~cally, its translation environment would look ouch the same.
Suppose, however, that the definitions of M2 and P43 ar. to be separated. They can be translatsd
n lapondsntly with the following two programe

prig S.ve(112.LIB.ri2 .REL) ; gr is
begin
prig RsqulrelCo.Oef .LIB.CCl1.TXT) ; Reg utr e(fl j Qs v .UB.ffl .~~LJ,

Pequlr etllX e f .LIB.fl3 .PEI.) s gyp ;
mend. CCII Is —:~~ tCClCef)~
~~~~ 

Ill Is ussisued (1110sf );
ssediuIs Pt2;

begin impsrl X ,Z ;
supsrt U;
medije 113 is .smeed(1130.f I $

sods
end

prig Sav. (t13.L!9.113.REL ) ; gyp:
begin
prig ~equirs (Cce0sf .LtB.CCI1 .TXT) s Rsqul re(fl lOs f .L IB.fl 1.flEL) ; g~ p
medule CCII is as,t~~sd icorio..i 5
medial. ill Is issiamsd (1110sf);
medial. 112;

begin import X ,Z;
expert U;
I 0nI~j tP*s deciari t iori , of 112 tMt are rsquired bV 113 seosar
mend. 113; begIn . . . sad;

‘.4. sad;
sad

1.5. Typ u

The notion of type is introduced into languages to govern the ways operations are applied to
objects. Types deternii ns certain propertIes of data (values), inck~dng what operation, on the volues
are legal and precisely what their effects are. Every object Pies a fixed type. This type is
determinable ct~fng translation The 4ype naine~ Is determined by the signobie of the type as
described in section 1.5.2. Tartan provides certaln belt-in typee these Include both simple and
composite types. The user may define new types on the basis of these primitives. Both user-defined
and bAit-in types are used to m ess that the acb.* parameters peseed to a ra~ Ins match the
correspo.dng formal parameters. Th. types of the formal parameters are also used to construct the
slgna b.u’e of a routine in order to resolve evsrtoeslng aiuógultles.

In Tartan, every value Pies exactly one type. This type is determined
- by the dedaratfa,, of a variable or definition Oh function

- by th, lexical form and context of ocourrence of a iitarsl
Types appear In foi~ contexts
- In declarations, tø give the type and attributes of an object

- in type definition,, to give the base representation of a newly-defined type

- in formal parameter lists, to restrict the objects that may be passed as parameters

- in function definitions, to give the type if the result

_________  —
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1.5.1. Characteristics and Attr ibutes
Some of the properties of a type are the same for all values and objects of the type. These are

called generic charact erist ics and are discussed below. Other properties of a type, called attri butes ,
may differ trim one value or object of the type to another. For axaniple, In Tartan the type of the
values used t~ index the elements of an array (the type of the index set) Is a generic characteristic,
whereas the exact bounds of the array (which values vs iii the Index set) vs attr ibutes.

The set of attribute names associated with a typo and the types of the corresponding attribute
values are given in the definition of the type. For example, objects of type fixed have attributes Max,
Mn, Predsson, and Scale.

Note that th, attribute, values of an object vs not part of it. type. It I, ther efore possible to
wr ite routines that operate on object. with different attributes. For exemple, it Is strol ghtforw ard to
writs routines that operate on arrays of arbitrary size.

It is often converussit to define lewiles of related typos with similar properties, and In which the
differences can be captured through differences in gensnc properties. A type definition p remeterized
in this way can be cast as a generic type definition Members of the family with distinct
characteristics ar, distinct typos.

Generic types are introduced tiwough 5ensrlc niodie definitions. For exam ple,
generic module Blocker (T:typs j ;

type Block(T1 (Order s Int l • arrayU..Ordsr) of I;
proc B l ocklt (vw BsBlock CTl )s begin . . . sad
end

define, a set of types ~ ock(_] and a set ad correspondIng procsdi.res. The definitions
module Int B l ock I, Blocker lint ) ;
module ReelBiock Is BIocksr CR..t 3;
modin lltjø l ock Is Block er (I1~jT~p.l;

introduce, respectively, the types
Blockllrit] (Order; Int l
B lock IRish (Ordsr t Intl
Block (IlsjTyp.i (Order; Int)

each of which Pies an Order attribute. Note also that the procedi.we aocklt Is overloaded to operate
on all these types, and that it is indifferent to the Order attribute of its .guesnt

1.5.2. Type Names
In Tartan, a ~type name> may be either a simple identifier or an identifier inflected with additional

type names. The ctype name> so formed capt.., the signature of the type. Far example, the ctype
name>s in the example above vs

Block (Int l
Block (Peel]
Block ftlij Tupel

Although the definitions of these Owes types are closely related (they arise from instantietlons of the
same generic riodijie), the types vs entirely distinct

The <type neme>s for the primitive scalar and simp le nonscalar types vs the keywords ueed to
• declare thent fixed, float, boelsan, atch~ ch.r, sst, st ring. actn.ms, file.

The ctypa name> for an array declared arvay(s..b) of 0 is arrsy[I,O]”, where I Is the ~type
nams> of a and b. Se. section 1.5.3 for th derivation

The <type name> for an sismieratlon declared .num(L1,L2,..Ln] is enwui(U,L2,...,L4
The <type name> for an activation declared activation of P is acttv.tion(P]
The type name> for a dynamIc type declared dynamic I Is dynamic I.
The <typ. name> for a record type is based on the se~ienca of field names and <type name>s in

its declaration For a record declared record(F1:T1, F2.~TZ —, Fnfl n]” the <typo name> is
record(F1:TN1, F21N2, .. ., FntTNn]”, where the Fl vs lists of fie ld names, the TI are typos, and Ph.

TM sic type names. ardings in the declaration do not appear in the type name. Thee, In the code 

... - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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fragment

proc P(var ~: r.ce r d ( a . b s R e . l ) ) ;  b.gin . . . and;
var us r.cor d(a. b;R e111
v., z;r,cor d (c.d ,R,al );

v ariables y and z have different ctype name’s and only y is acceptab le as a parameter to P .

The <type name> far a variant is ve,lan4~TT,T1->V 1,T~ i.V2,...,Tn-,Vnr, where IT is the <type
name> of the tag . TI is the ith value of the tag type, and V i e  the <type name> that corresponds to
the ~th value of the tag type As a result, two variant <type>, are the same if they specify the same
<ty pou s for all value, of the tag Thus for

typi Cal or - ..x.nl (red, gr een, blue , w el lou)
variant IsColer (en red -~~ ai:l nt on b l u e - ~:(1ar’i(5) sn othsri —> ~twr.y ( 1 . . S )  oh In t l

the <type name> Is varlanl(Color, red->Inl, gresn->art ayflnt,Int], blue-’Mark, ya4low-.arrayfInt,Int~ .
The <type name> for a defi ned type is the type name given in the type definition, as illustrated

above fo r ~ ock(.4

1.5.3. Array Types

The bUtt- in array type is in fact a generic lonely. Arr ays have iswlorm propertIes in that every
array is a structur, for storing a linear homogeriecu, fixed-length seq.anca of values indexed by a
given ordered set of values. However, arrays with different element types or different types of
indices are dist inct typos.

Thi s particular generic family of types is so common that Tartan, like most languages , provides
special syntax for ii There is a set of types pro-defined as “arrsy(Ixlype,Eltlype](r) where Ixlype
is the index type, EltType is the element type, and r is a (sub)rsnge of Ixlype . The syntax asray(r)
of Elt lype is provided as an abbrev iation for each such type. Thus array(L10) of flo at means
‘array(Int,Slo.tJ( 1.. 10)-. it, typ e name. an’ayIintJloatT. is written array(Int) of float . Thus II we
have declared

var V : array (1. .IB) of Fl oat
var B; array red. . gr im ) ii boo’..n

the generic type of both B and V is array, but their <type name>, are different The <type name> of
B is arr.y(int,float], whereas the ctype name> of V is array(color,bootean]

The type array(A,S) of r is an abbrev iation for arrsy(A) of arvay(B) of r. Similarly, the array
acceasor ‘ Vci,j) is an abbrev iation for V(1Xj) .

1.5.4. Declarations
The attri butes of a variable become fixed at the time of its allocation. For static variables , this

occurs during elaboration of the declarat ion. Variables of dynamic types do not thems elves have
attributes. The dynamically allocated objects they refer to do, however, have attri butes ; these are
suppli.d whenever a const ructor is executed

The declarati on of a stat ic variable must provide both a type name> and values for the attributes
associ ated w ith that type. For example, the declaration vV V: array (m..n) of lnt , which is en
abbreviation for var V: arraytlnt,lntXm..n) , compute, the currant values of in and n to obta in the
range of the index set, then statically allocates a eatab le block of storage . However, the program
fragment

hype Arr(n : I n t l  • dy~anNc array (i..n) oh m l ;
var V; Arr ;
V ;.

allocates the variable V with type Arr, no attributes , and all v alues undefined . The declaration
allocates a referenc , to V and sets it to ml. The constructor dynamically creates a new object of
type array( lnt) of Int with subscript range attribute ‘L5 and assoc iates this object with variable V.
A subseqjent assignment to V might use a constructor with a different bound

1.5.5. Type Checking
The type checking ni, for matching actual and formal parameters is based on th, types (but not

the attributes) of the parameter s. The actual parameter Is acceptable iff the <type name> from its
declaration exactly matches the itype name> of the formal parameter .
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Th. attributes of the values returned by a function invocation are determined immadately before
calling the function. They must therefore be spec ified in terms of input values of the function. For
examp le, If Str is a type with attrlbut. Length, th, definition

limit Con c .tf S. l g Str)R ,Str; beg.’, . . . and;

would not be legal, since the attributes of the functional result are not specified. The following.
however, would both be legal (but wo uld have different meedngs):

I
fu.,S Coricatl S. T ; St r ) Ps St r (27 ) ; be,ln . . and;
hinc Conc.t(S,T; StrIR ;SIrIS.Leng tP..T.L.ngth); bsgin . . . and;

This simplifIes the implementation, but it precludes the definitio n of functIons that return values whose
attributes can only be determined di,i ng the evaluation of the functio n. This should not usually be a
s tri ngent constraint; in the worst case a dynonic type may be used to return the value.

1.5.6. Definmg Types
A user may introduce a new type into his program with a type deflation. The type definition itself

merely introduces the <type name> and defines th, representation of th, type. Operations are
introduced by writing routines whose formal parameter, are of the nswly-dsflned type. Scope
boundaries, particularly mod,f a boundaries, play no role in the definition of the type. There is, as a
consequence, no notion of the complete set of operations on a type.

A type defi nition may be paremeterized with attributes. The bindings in the formal parameter list
roust be const or mamfest If a <bindin g> is omitted, it will be ssumed to be const The names of the
formal parameters of the type are available throughout the elaboration of th, program as constants,
called attributes They are accessed by tr.ating the <var dent> as a record and the type attribute as
a coest field, Attributes for primitive types are given as part if the type definitions

1.5.7. Operations on New Types
Operations on new types are introduced by routine definitions. These may be either routine, called

with normal invocation syntax or definitions for lidix functions. In order to make it possible to write
basic operations on the new type, Tartan provides a mean. of applying operations of the underlying
representation to objects of the new type. W;thin the scope in which the type is defined, the
qualifier Rep may be used to indicate that the object named by the identifier it qualifies is to be
treated as if it had the underlying type. It is not export able. This allows operations on the new type
to be wri tten using operations on its representation. When no anibipaty arises, the Rep qualification
may be omitted. For example, we may write

type Ilsrk — tnt;
func .i.1a,bs Merklc;ll rk; b.gin R.p’c :• • R.p b m d i

Rep qualification Is intended to be used within a mod..de In order to write primitive operitions and to
extend operators tø the new type. It is obviously possible to abuse the facility.

An assignment operator is automatically supplied for user-defined types. Although it may be
invoked with any variable and value of the type, it signals the BadAssign exception if the attributes of
its left and right operands are not identical or If component-by-component assignment would fail. Sizes
of nonscalars are thus guaranteed to be compatible. Clearly, assignment may be well-defined in cases
where this r*ie disallow, it. Such assigvwnent operators could be provided if user-defined assignment
were compatibl, with the requirements.

When a module is used to encapsulate the definition of a type and its operations, the typ. name
and some of the operations roust be exported from the modiJe. Types, named routines , fie ld

• occas ion for records, and variable , are exported by including their names In the exports list of the
module. The right to apply infix operators, constructors, subscripts, .&l”~ or th. create command are

• expo rted by including the special names T’lnfix, rconstr, T’subscr, raft, and rcr.ete, respectively , in
th. exports list. Liter als of enumerated types we exported e.itomatically if the types are exporte d,

1.6. Parallel Processes
~~ Parallel processes are controlled wi th data of Iwo typos — activations of processes and actne ino s,

or names of act ivations. An activation variable must be an instantiation of a given proces s; it may
• cont ain at most one activation of that process airing its lifeti me. Art sctname variabi. is a pointer to

art activation. A single aciname may be associ ated with different Inste nt lations of differ ent processes

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Th~~ --
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from time to time.

Processes are simil ar to procedures. The synt actic distinction between proceckw es end processe s Is
imposed because we believe the potential for paralle l execution should be Indicated explicitly in the

• program.
Note that activations and actnames control only the parallel control flow of the program. No

synchronization is supplied with the processes; this must be coded .xplicitly with the prim itive latches
or with other, nonp rimit ive synchronizetion.

1.6.1. Activations

Activat ions of processes are used t* control parallel or pseudo-parallel execution of instanc es of
the named process. If P is a pr ocess and x is a varia ble of type activation of P, then x can contain an
independently-executing instantiation of P. called an activation of P. An activation of P may be in one
of several states:

— Mint: A mint activation he. not yet been started up as a process. The only operations that
• can be performed on it vs create, NameOf (I.e., the function that returns the actIvat Ion ’.

name), and the slate-interrogation predicat.s. A newfy-dedared activation or actname Is
Initialized to the literal nthtt .

- Suspended: A suspended activation can have no eftect on any objects; in essence, it is not
executing and will not execute until it is activated (see below).

- Active: An activ, activation Is one in which it is f.ss ible for elaboration to taka place. It
may affect object s, and its dock may advance.

— D.ad A deed activation admits of no further elaboration. It cannot be revived and it can play
no further role in the program. An activation becomes deed when it exits normally, when it
fails to handle an exception raised during its elaboration, or when It is named by a Terminate

‘. command.

The extent of an activation vari able Is determined by the block In whic h it I. declared. When such
a variabl e is declared, an activation of the named process is instantiated, set to state mint, and
associated with the declared process name. The immedataly enclosing block cannot be exited until all
acti vations declared within it are dead or still mint. An activation is associated with exactly one
process , but a sin gle process may be instantiated miiti ple times for different activations.

If x has been declared as an activation of P and is in umni stat. , the statement “create x(...)”
creates a new activation of P in suspended ,t.t .. The formais of P are bound to the ectuals supplied
in the create in the same way as actu als are bound for a procedi.re call. If a process takes a var

• parameter , the corresponding actual parameter must have extant at least as rest as th. acti vation ’s
extent . For purposes of thi s rule, an activation passed as a var parameter to a routine is treated as ii
its scop , were that of the process definition. As a result, trans lators need no dynamic extent checkin g.

Except for create , all operations on activatio ns are syntactically routine invocations. These routines
conrol the processes and hence the parallelism by changing and Interro gating the stat , of Individual
actIvation s. They are listed In the Tartan Rafer.nca Manual.

1.6.2. Fork and Jon

The extent rules re~.Ars each activation to complete (exit or tarminate) or still be mint before the
block in which it I, declared can exit. This provides an implicIt jo in operst ion. A fork can be
obt ained with a serie, of creates and act ivates. For example,

begli.
process P (cmst .‘; In )) ;  begm . . . mdi
var V ; mrrsy ( 1..LB) sf ictlv.tIoa oG P;
for i In 1..1S do ~r.mti V IIJI I ) ;  nttvale( PtiI) sd

• dec lares ten activations of a pracass , uses create to start them up with dl ffarent values of the input

__________________  —~~~~~~~~~~~
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variable (using the loop index as the input value a. well as to index the array of activations), moves
each activation into active stat e, and wa its at the end of th, block for the activa tions to terminate.
After startin g the activations of P, the main program may continue with other computation , monitor the
progress of the acHvsti ons, or simply wa it for the activations to terminat e.

• 1.6.3. ActivatIon Names

An actneme may name any activation. An actname variable is not permanently assoc iated with any
• particular activati on, and there is no req~ramsnt about the state of the activation named by an

actname when th, extent of that actrame variable is •xit,d or terminated. This permits routines to
Operste on activations without knowing what processes they are activations of. For example, it makes
it possible far routines that ais generally use*4 far managing activations Is be defined In a large
scope without re~ aring all process definitions and activation variables to inckide that scope. A single
act ivat Ion may be named by more than one actname. There is no dangling reference problenc Even
though the reference (aciname) may outlive the activatio n, the activation will be dead (terminated or
mint) after its block is exited (and this no unexpected computational results can be induced).1 Since
the create command cannot be applied to an adname, the process cannot be resterted.

Activation variables may not be the object, of assignments and may not appear In result parameter
positions. However, each activation has a name, of type sciname. This name may be obtained by
invok ing the functIon NanwOf on an activation All operations on activations except create extend to
actnsines. This, Su.pend(Name0f(x)) has the same effect as Suspe,4x) The special operation Mao
returns the actns,n, at the ozrsnt process. In addition, actnarne veriables may appear in assignments.
(This users may write program. that operste on anonymous activations, for example to do
special-purpose schediulng.) The extent of an actrame variable may dominate the extent of the
activation it names. If that situation arIses, altar th. extent of the activatio n Is exited, the actname will
refer to a terminated process, and no damage can be dons.

The Notify operation on act ivatIons or actranies signals the Terminate exception in the
currently-executIng statement of the activation named by the command. Within the activation in wh ich
it is raised, Terminat, is treated like any other exception This is the onty mechanism provided by
Tartan that enable, one activation to internet another.

1.7. Unresdved Issues
We did not obtain solutions to all the Ironman requirements In the two-month period allotted to th is

desi gn. In this section we sketch the way we would adth ’ess the i...wesolved issues.

1.7.1. Machine-Dependent Code
Machirw-dep.ndent code presents two issues. definition of operations and defInition of data. Tartan

will permit separately-defined mschine-dependent routines to be incorporated in the same way as
other separate definition.. The is consistent with the St.slme n rep.ãr.ment. We have not yet
eddresssd the problem of machine-dependent declarations (data layout).

1.7.2. S~m.Ation
We believe Tartan support, a programmed solution to th, simulation re~iremenL For example, the

facilities of Sinüa 60 can be provided for Tartan programai

- Tartan act ivatIons can serve th, same function as Simula activit ies.
- A coroutlne call discipline may b programmed using the routines Activate and Suspend.

- A echeö.ier that manages Insisted time can b, programmed, again using operations on
activations.

‘The activati on record itself may be allocated in the heap; It does not become eligible for garbage
collection until all references have been broken. Thus no achier,, can become an uncontrolled pointer.
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1.7.3. Definition of Integers

In the reference manual we chose fIxed as a primitive and defined lnt as a special case by
choos ing attr ibutes appropr iately. W, believ, it is pceaible to treat m t  as primitive and define Fixed
as nonprlrmtive by associ ating range~ raciaion boskkesplng with the operations.

1.7.4. Low-Level Input and Output

We Included fi le as a primitiv e data type but did not speci fy its propert ies. Given the ability to
write machine-dependent code to accesa the devices and the abIlity to use processes to maintain state
(arid herics to evoid, for example, re-opening a fi le for each operation), we believe a wide variety of
low-level ljO can be Implemented effectively.

1.7.5. Higher-Level SynchronizatIon
&imeraus synchronizatIon discipline, have been proposed or are in active use. None of them

clearly dominates the others; none Is appropriate in all cases. We hay, elected to provIde a very
primitive synchronization tool, a latch Conceptually, a latch Is a spinlock: failur, to sleze such a lock
dcee not necessarily release the processor. By choosing a primitive macharlem, we hope to avoid
pr.-ornpting the implementation of higher-level synchronization techniques. We believe alternative
mechanisms can be Implemented effectively in Tartan. Indeed, we believe that this I. the correct
appr oeth
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2. Programming Examples
Several samp le Tartan programs are presented hare. Some show the use of various features of the

ian$uage; others provid, programmed (norprlvmtive) solutions to certain Ironman reqjWernenta

2.1. Simple Static Data Type

A circular buffer is Implemented In a vector. The definition Is ensric In th, type of the ,tenients;
the length of the buffer Is an attribute of the type. This Implementation k eps a pointer to the
current head of the buffer (Head) and a pointer to the elarnent one past the want end of the buffer
(Toil ), All arithmetIc on these pointers Is done mo~do the size of the buffer.

• ge srls ms~ i~. clrcu l arSufrerstTstyp sI ,

,.,srts CIrcBufI fl. I tupe. attr ibute Size
Clear . Append, Resovs. Full , E.ptv. I routines

k Bu tOvfl; I sacuption

• type Clrcfluf (fl (Size :Int) • .‘.usrd tI~;e’r.y(B..SIzs—i} of T, Ile.d,Ta lls Inti ;

saseplien BufOvf I;

prsc C%e.r (r.uult Cs Circ6u f (T3); b.$In C.iisedt ..S; C.T.Il;-I smis
pies Appendtvsr Ci Clrceuf tTl . wnit YeliTh

If Full (C) th..i signal OufOv f Ii
C.Bf ( C.T .I$) is  Vii;

V C .Tall is .od (C.T.ll~1. C.Slze) :
‘MI

pros Rs.ovs(vsr CzClrceutm . r.s~* V als TI;
begin

V .srt —
Va f is C.8~ (C.Head) s
C.H..d is .cd(C.He.d+l. C.Siz&;
end;

- ;  tun e Ful t lCzCIrceu fm W:be s leent beinF is lCJ4ead • .ed(C.Tell.1. C.Slzu)) end;

lime E.pty lCs Clrcflu f tl )PE;bsslu n; ~~~ S is IC.H.ed - C.T.il) end;

end I .odu Is C lrcu I arfi uf rars

2.2. Simple Dynamic Data Typ.
We define a list-processing mo~ie. Each 11 t call contains a value of a speci fic type; the definition

of the mo~.ie Is ganaric in this type.

genesIs Maduil. Ll.tO.IIT:typ.is
begin
~~.srl. List (TI . Data, M.i.t. I type and fl sld ne.ss

• Clear , insert. Delete , Last ; I routines

type L lst f l I  • dynids rsssrd (D.t.zT. Nsa tiLI stm Is

pros Cleariresidu LsLls t (T1 )
~ begin L . iUl .nd;

• 
. pros inesrt(v.r EItaLIa t (TI , VaIiT) ;

w E s t — r n
th en SI t is  L.latCTI ’(V.l ,uul)
.1.. Elt .Nsx t is LIs t IT I ’ (V.l .Elt .Ns ,ut )

end’
pros Oelete (vv E lt iL l et i T i); begkiisssrt SIt e silt SIt ; Elt.Nsi.t end;

hess Las t (L;t. is t (13)p, Ll s t (Ti ;
begin

end;
end I .oduls Li stOa f
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2.3. Selecting Representations
Altho ugh Tartan treats types with dfferent representations as different types, it 1* possibl e to Use

the var iant and case facilities t. defi ne generic types that provid e sinwular types with diffe rent
represe ntation s. The representation is fixed di~ring translatlos, when the generic defInition Is
instantiat ed.

TN. examp le defines two alternativ , representations of queues. It has two generic parameters.
Th, first Is th, type of th , elements being qjsued, and it is used as In the previous examples. The
s.cond is a manifest constant , which is used to select which representation of queues Is to be used.
Sinc, the variant Is fixed ö.,lng translation, there shculd be no loss of execution efficiency.

The two representat ions of queues are defIned in terms of the circular buffers of section 2.1 and
the lists of section 2.2.

g.nsvis medul. aueusce,(T;Iype . F:siiuiuu (Fix ,FIexIJ;
begin
eiipsrts Oueue CTl . I typ e, attr ibu te Si..

Cleer . Eng. Dsp, E.pty, Full . I routInes
GOv t I; I inception

.,uedude Lst Ii LIstO,f (T]~
~uuedude ~St I. CircularBuffers(fl;
typ. Oueu.tI) (Siz e ,int)

variant usanifesi F,,; enwn(Fix ,Ft.nI . F
I in Fin —~~ Circfl uf (TI (Siz e) en Fle x -, L ist i T I I

sasepilon Xvii; I can only be raised on OusuetFIx)
pies Clearl resuli 0; Ous us(fl );

begin
en. F en Fix -, Cl.ar (QfF Ia)) en Flu. -, Cl.ar (QtF Iex~) .me

end ;

pros Eruq(vsr Os Ousuetl), inst Vii; TI;
begin

• en Fin — Append (O (Fi*) , V al) ( en OidOvfl —. signal 00,11
on Fl.,, —~~ Ins.rt(L..t(Q (Flsad ), Ve il
sSin

end;
pros Oep(var 0; Ou.u.(TJ . resist V .1; 1);

sins F
On Fin —~~ Reeove(Q (Fin). V i i )
en Flu. — begin V •l us O(Fies).D.ta; Oelsts(0(Fien)) and
‘sin

end;
tune Eapty (Q;Oueue(13 )Esbent..n;

begin
sin . F

en FI* -. E ;• Epp ty (Q(Fin ) )
in Flex - 5 • (Q(Flu.l •
‘sin;

funs Full(OsQu.ue CTIJE,bssle.,,;
begin
ten. F en Fi n -. 5 ;. FuII( Q(Fin) .FinAep ) in Flex —

~~ 5 us Isis. isis
end;

end l esdul e OususOef

•1
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2.4. Safe Data
Tartan doe. not provide indivisible operators for fetching and storing values. If parallel processes

are operating, the programmer needs to take preceilone to ensure the lidvisibility of these
operations. This program illustrates a solution that witi work wed with types for which fetching and
storing the whole value makes sense.

—
msdise Co.pI.n Is assum,ed(Couuls ’d..ib) s I Couple’ .xport s type Coup

~siusvhs medule S.fsOatatTstypst ;begin
~~,arls SsfetTl , Get. Put; I ty pe nene, fetc h and stoi c routine s
type Setet li • retard (Llu latdu. Datet T~;

hunt G.t(v S;S.fe tTI )R~T; begin Loc*(S.LIi) ; R is  S.Oat.s Ikulo ck(S.Lk) end;

pros Put (var S;5.f.tTl . var fisT) 5 bsgiui Lock(S,W; S.Dst. is R; tiniochi (S.Lk) and;

end; I seoul. SafeGata
- . module S.f.Coep i ex is SafsOet.(Caepi ; 

V

var w.g,z; SafeiCoupi ;
Put ix, Coep’fl..LI):
Put (g. Co.p’ (L . l .))s
Pu t(z, Get (nJ+G .t(y fl;

ends 
V

Function Get takes a Sefs(T) (hers, a SaMConipD as a var parameter. Since the Lk fIeld is not
exported from modii. SafsOata, Get may use the procedures Lock and Lkdock on that latch In order to
protect the fetch 

V

Procedi,e Put specifies ‘or parameter, In both poihlone. Even though It does not alter R, a coast
specification would cause a copy.

The generic SatcOats medic I. Instantiated epedficaliy for ardors of type Coop (the type
exported by module Complex).

In the men prog ram, the Camp constructor I. used tw lca to generate vakas to stare In the
variables. The newly-constructed vslues in the calls on Put are e’-c~.rble snty In this progr am, so
the constructor Itself does not need to be Indivisible. In the third assignmant (call on Put)~ the
addition is the additIon for type Coop exported by medic Complex.
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3. Optio na) Adc~tions to the Language 
-

In the co.yse of the Tartan design, we encountered a runber of cab,.. that seemed attract Ive but
could not be sdvwtt.d because they violated either the Ironman rec~ãremeM Itself or the rul* of
minimality that we edopled for the design experiment. We lISt some of these here, indicating what
they might add t. the language and what they night cost

Abbrev iati ons for csmpsund names. The import rule as stated can lead to the need for a subst antial
amount of qjailflcaffon because all expo rted names, especially of types and routines, are patontlafly
available pervasively. A renaming facility would reduce the need for explici t qualification. The V

V renaming facility might involve renanung on import~ or it night b a general with-douse. It wo uld odd
convenience arid probably improve the readabilIty of the language. However, It would introduce a new
construct in the language and introduce a new way to create aliases.

Lass-than-globol storage peels. As the language is defined, all dynamically allocated variables slier.
the same heap. It would be possible to add the ability to declare a local sub-heap (zone) on the
stack and allocate designated dynamic variables from it instead. There might be several zones active
at once, with certain groi~ e of variables sharing different ones. Alternatively, zones might be
associated with blocks and all dynamic types defined in a block would share storage Irons a comm~~zone. The cost is an additional mechanism and more complex scope rule.. The benefit would be more

V control over dynamic variable. and possibly more efficient storage recovery.
R.sumable and parmmeterized exceptions An interrupt-style exception that has the semantics of a

procedure call (resuwng where it was raised) would be a useful thing to add. It would provide better - - 
- V

control over many excepti on situations. Almost all the necessary mechanism must already be there to
deal with the Notify command (I.e., the Terminat, except ion). In addition, the ability to pass parameters
would be helpful, although it would complicate the syntax.

Richer control constructs. A loop exit and explicit function return could reduce the raumber of gatos
and awkward conditional statements in prograure. A richer collection of loop structures (downward
counting, repeat with exfthf ~ and so on) would add convenience. However , each such construct ~~ds to 

- V

the size of the language.
Assertions in declarations. As presently fonmiatad, assertions are statem ents. It cou ld be useful to

permit, them in declarations us order to check vilues if attr ibutes and to guard init ialization
expressions . It would, however , reqire addition al complexity in the syntax.

V User-definable assignment. As noted in section 1.5.7, a defe.it definition of assignment cannot
anticip ate all reasonable type definitions and all situat ions In which asei,~.ma..t melt., sense. Only the
programmir hoe the knowledg. to do Is. Tartan already permits infix operators to be overloaded for
new typom there would be 11111. additional cost for allowing ~ to be overloaded as well.
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